[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117941
Inverse of number triangle A117939.
3
1, -2, 1, -5, 2, 1, -2, 0, 0, 1, 4, -2, 0, -2, 1, 10, -4, -2, -5, 2, 1, -5, 0, 0, 2, 0, 0, 1, 10, -5, 0, -4, 2, 0, -2, 1, 25, -10, -5, -10, 4, 2, -5, 2, 1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, -2, 0, 0, 0, 0, 0, 0, 0, -2, 1, 10, -4, -2, 0, 0, 0, 0, 0, 0, -5, 2, 1, 4, 0, 0, -2, 0, 0, 0, 0, 0, -2, 0, 0, 1, -8, 4, 0, 4, -2, 0, 0, 0, 0, 4, -2, 0, -2, 1
OFFSET
0,2
COMMENTS
Row sums are A117942.
T(n, k) mod 2 = A117944(n,k).
EXAMPLE
Triangle begins
1;
-2, 1;
-5, 2, 1;
-2, 0, 0, 1;
4, -2, 0, -2, 1;
10, -4, -2, -5, 2, 1;
-5, 0, 0, 2, 0, 0, 1;
10, -5, 0, -4, 2, 0, -2, 1;
25, -10, -5, -10, 4, 2, -5, 2, 1;
MATHEMATICA
M[n_, k_]:= M[n, k]= If[k>n, 0, Sum[JacobiSymbol[Binomial[n, j], 3]*JacobiSymbol[Binomial[n-j, k], 3], {j, 0, n}], 0];
m:= m= With[{q = 60}, Table[M[n, k], {n, 0, q}, {k, 0, q}]];
T[n_, k_]:= Inverse[m][[n+1, k+1]];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 29 2021 *)
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Paul Barry, Apr 05 2006
STATUS
approved