[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117936
Triangle, rows = inverse binomial transforms of A073133 columns.
4
1, 1, 1, 2, 3, 2, 3, 9, 12, 6, 5, 24, 56, 60, 24, 8, 62, 228, 414, 360, 120, 13, 156, 864, 2400, 3480, 2520, 720, 21, 387, 3132, 12606, 27360, 32640, 20160, 5040, 34, 951, 11034, 62220, 190704, 335160, 337680, 181440, 40320, 55, 2323, 38136, 294588, 1229760, 2997120, 4394880, 3820320, 1814400, 362880
OFFSET
1,4
COMMENTS
Left border of the triangle = Fibonacci numbers, right border = factorials. Companion triangle A117937 is generated from Lucas polynomials, using analogous operations.
Note that binomial transforms are defined from offset 1 here. - R. J. Mathar, Aug 16 2019
FORMULA
Inverse binomial transforms of A073133 columns. Such columns are f(x), Fibonacci polynomials.
EXAMPLE
First few columns of A073133 are: (1, 1, 1, ...); (1, 2, 3, ...); (2, 5, 10, 17, ...); (3, 12, 33, 72, ...). As sequences, these are f(x), Fibonacci polynomials: (1); (x); (x^2 + 1); (x^3 + 2*x); (x^4 + 3*x^2 + 1); (x^5 + 4*x^3 + 3*x); ... For example, f(x), x = 1,2,3,... using (x^4 + 3*x^2 + 1) generates Column 5 of A073133: (5, 29, 109, 305, ...).
Inverse binomial transforms of the foregoing columns generates the triangle rows:
1;
1, 1;
2, 3, 2;
3, 9, 12, 6;
5, 24, 56, 60, 24;
8, 62, 228, 414, 360, 120;
...
MAPLE
A117936 := proc(n, k)
add( A073133(i+1, n)*binomial(k-1, i)*(-1)^(i-k-1), i=0..k-1) ;
end proc:
seq(seq(A117936(n, k), k=1..n), n=1..13) ; # R. J. Mathar, Aug 16 2019
MATHEMATICA
(* A = A073133 *) A[_, 1] = 1; A[n_, k_] := A[n, k] = If[k < 0, 0, n A[n, k - 1] + A[n, k - 2]];
T[n_, k_] := Sum[A[i+1, n] Binomial[k-1, i] (-1)^(i - k - 1), {i, 0, k-1}];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 01 2020, from Maple *)
PROG
(Sage)
@CachedFunction
def A073133(n, k): return 0 if (k<0) else 1 if (k==1) else n*A073133(n, k-1) + A073133(n, k-2)
def A117936(n, k): return sum( (-1)^(j-k+1)*binomial(k-1, j)*A073133(j+1, n) for j in (0..k-1) )
flatten([[A117936(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Oct 23 2021
CROSSREFS
Cf. A006684 (column 2), A309717 (column 3 halved).
Sequence in context: A300663 A102310 A151546 * A264766 A251090 A078331
KEYWORD
nonn,tabl,easy
AUTHOR
Gary W. Adamson, Apr 03 2006
STATUS
approved