[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117805
Start with 3. Square the previous term and subtract it.
3
3, 6, 30, 870, 756030, 571580604870, 326704387862983487112030, 106735757048926752040856495274871386126283608870, 11392521832807516835658052968328096177131218666695418950023483907701862019030266123104859068030
OFFSET
0,1
COMMENTS
The next term is too large to include.
a(n) = A005267(n+1)+1. - R. J. Mathar, Apr 22 2007. This is true by induction. - M. F. Hasler, May 04 2007<
For any a(0) > 2, the sequence a(n) = a(n-1) * (a(n-1) - 1) gives a constructive proof that there exists integers with at least n + 1 distinct prime factors, e.g., a(n). As a corollary, this gives a constructive proof of Euclid's theorem stating that there are an infinity of primes. - Daniel Forgues, Mar 03 2017
FORMULA
a(0) = 3, a(n) = (a(n-1))^2 - a(n-1).
a(n) ~ c^(2^n), where c = 2.330283023986140936420341573975137247354077600883596774023675490739568138... . - Vaclav Kotesovec, Dec 17 2014
EXAMPLE
Start with 3; 3^2 - 3 = 6; 6^2 - 6 = 30; etc.
MAPLE
f:=proc(n) option remember; if n=0 then RETURN(3); else RETURN(f(n-1)^2-f(n-1)); fi; end;
MATHEMATICA
k=3; lst={k}; Do[k=k^2-k; AppendTo[lst, k], {n, 9}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 19 2010 *)
RecurrenceTable[{a[0]==3, a[n]==a[n-1]*(a[n-1] - 1)}, a, {n, 0, 10}] (* Vaclav Kotesovec, Dec 17 2014 *)
NestList[#^2-#&, 3, 10] (* Harvey P. Dale, Oct 11 2023 *)
CROSSREFS
Cf. A007018.
Sequence in context: A282132 A002164 A331661 * A154135 A182274 A103091
KEYWORD
easy,nonn
AUTHOR
Jacob Vecht, Apr 29 2006
STATUS
approved