Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Apr 24 2015 09:20:01
%S 2,3,5,5,7,11,7,9,13,19,11,13,17,23,31,13,15,19,25,33,43,17,19,23,29,
%T 37,47,59,19,21,25,31,39,49,61,75,23,25,29,35,43,53,65,79,95,29,31,35,
%U 41,49,59,71,85,101,119,31,33,37,43,51,61,73,87,103,121,141,37,39,43,49,57
%N Triangle read by rows: T(n,k) = k^2 - k + prime(n), 1<=k<=n.
%C T(n,1) = A000040(k);
%C T(n,2) = A052147(k) for k>1;
%C A117531 gives number of primes in the n-th row;
%C if T(n,1) is a Lucky Number of Euler then A117531(n)=n, see A014556;
%C 1<k<n: T(n,k) = T(n,k-1) + T(n-1,k) - T(n-1,k-1).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomial</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LuckyNumberofEuler.html">Lucky Number of Euler</a>
%e T(5,k)=A048058(k)=A048059(k), 1<=k<=5: T(5,1)=A014556(4)=11;
%e T(7,k)=A007635(k), 1<=k<=7: T(7,1)=A014556(5)=17;
%e T(13,k)=A005846(k), 1<=k<=13: T(13,1)=A014556(6)=41.
%o (PARI) T(n,k) = k^2 - k + prime(n) \\ _Charles R Greathouse IV_, Apr 24 2015
%K nonn,tabl
%O 1,1
%A _Reinhard Zumkeller_, Mar 25 2006