[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117275
Number of partitions of n with no even parts repeated and with no 1's.
1
1, 0, 1, 1, 1, 2, 3, 3, 4, 6, 7, 9, 12, 14, 18, 23, 27, 34, 42, 50, 62, 75, 89, 108, 130, 154, 184, 220, 259, 307, 364, 426, 502, 590, 688, 806, 941, 1093, 1272, 1478, 1710, 1980, 2290, 2638, 3042, 3503, 4021, 4618, 5296, 6060, 6934, 7924, 9038, 10306, 11740
OFFSET
0,6
COMMENTS
Column 0 of A117274.
FORMULA
G.f.: (1+x^2)*product((1+x^(2k))/(1-x^(2k-1)), k=2..infinity).
a(n) ~ exp(sqrt(n/2)*Pi) * Pi / (2^(17/4) * n^(5/4)). - Vaclav Kotesovec, Mar 07 2016
EXAMPLE
a(8)=4 because we have [8],[6,2],[5,3] and [3,3,2].
MAPLE
g:=(1+x^2)*product((1+x^(2*k))/(1-x^(2*k-1)), k=2..53): gser:=series(g, x=0, 62): seq(coeff(gser, x, n), n=0..58);
MATHEMATICA
nmax = 60; CoefficientList[Series[(1-x) * Product[(1+x^(2*k))/(1-x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)
CROSSREFS
Cf. A117274.
Sequence in context: A071610 A358993 A198726 * A327725 A253926 A277579
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 06 2006
STATUS
approved