[go: up one dir, main page]

login
Numbers k such that k and 2*k, taken together are pandigital.
6

%I #29 Jul 15 2021 21:26:03

%S 13485,13548,13845,14538,14685,14835,14853,14865,15486,16485,18546,

%T 18645,20679,20769,20793,23079,26709,26907,27069,27093,27309,29067,

%U 29073,29307,30729,30792,30927,31485,32079,32709,32907,34851,35148,35481,38145,38451

%N Numbers k such that k and 2*k, taken together are pandigital.

%C Sequence contains 48 terms, the largest being 48651.

%C If leading zeros are permitted, there are 12 additional terms: 6729, 6792, 6927, 7269, 7293, 7329, 7692, 7923, 7932, 9267, 9273, 9327. - _Harvey P. Dale_, Feb 09 2014

%H Nathaniel Johnston, <a href="/A115922/b115922.txt">Table of n, a(n) for n = 1..48</a> (full sequence)

%e 13485 and 26970=13485*2 together contain all the 10 digits once.

%p for n from 12345 to 49382 do d:=[op(convert(n,base,10)), op(convert(2*n,base,10))]: pandig:=true: for k from 0 to 9 do if(numboccur(k,d)<>1)then pandig:=false: break: fi: od: if(pandig)then print(n): fi: od: # _Nathaniel Johnston_, May 31 2011

%t onehalfQ[n_]:=FromDigits[Take[n,5]]/FromDigits[Take[n,-5]]==1/2; FromDigits[ Take[#,5]]&/@Select[Permutations[Range[0,9]],onehalfQ] (* This program generates the full 60-term sequence, with leading zeros permitted, of which this sequence is a subset -- see Comments *) (* _Harvey P. Dale_, Feb 09 2014 *)

%o (PARI) {for(n=10234,49876,#Set(digits(n))==5||next; #Set(digits(n*2))==5 && #Set(concat(digits(n),digits(n*2)))==10 && print1(n","))} \\ _M. F. Hasler_, Feb 08 2014

%Y Cf. A050278, A054383, A115923, A115924, A115925, A114126, A115927.

%K nonn,base,fini,full

%O 1,1

%A _Giovanni Resta_, Feb 06 2006