[go: up one dir, main page]

login
A115721
Table of Durfee square of partitions in Abramowitz and Stegun order.
5
0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2
OFFSET
0,10
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Eric Weisstein's World of Mathematics, Durfee Square.
FORMULA
If partition is laid out in descending order p(1),p(2),...,p(k) without repetition factors (e.g. [3,2,2,1,1,1]), a(P) = max_k min(k,p(k)).
EXAMPLE
First few rows: 0; 1,1; 1,1,1; 1,1,2,1,1; 1,1,2,1,2,1,1
CROSSREFS
Row lengths A000041, totals A115995.
Sequence in context: A063993 A353445 A115722 * A279497 A359305 A138330
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved