[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114244
a(n) = (n+1)*(n+2)^2*(n+3)*(7n^2 + 28n + 30)/360.
2
1, 13, 76, 295, 889, 2254, 5040, 10242, 19305, 34243, 57772, 93457, 145873, 220780, 325312, 468180, 659889, 912969, 1242220, 1664971, 2201353, 2874586, 3711280, 4741750, 6000345, 7525791, 9361548, 11556181, 14163745, 17244184, 20863744, 25095400, 30019297
OFFSET
0,2
COMMENTS
Kekulé numbers for certain benzenoids.
First differences of A114242. - Peter Bala, Sep 21 2007
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 167-169, Table 10.5/II/5).
FORMULA
G.f.: (1+x)(1 + 5x + x^2)/(1-x)^7.
From Amiram Eldar, May 31 2022: (Start)
Sum_{n>=0} 1/a(n) = 5*Pi*(7*sqrt(14)*coth(sqrt(2/7)*Pi) - 6*Pi) - 1295/9.
Sum_{n>=0} (-1)^n/a(n) = 5*Pi*(7*sqrt(14)*cosech(sqrt(2/7)*Pi) + 3*Pi) - 2755/9. (End)
MAPLE
a:=n->(n+1)*(n+2)^2*(n+3)*(7*n^2+28*n+30)/360: seq(a(n), n=0..35);
MATHEMATICA
Table[(n + 1)*(n + 2)^2*(n + 3)*(7*n^2 + 28*n + 30)/360, {n, 0, 30}] (* Amiram Eldar, May 31 2022 *)
CoefficientList[Series[(1+x)(1+5x+x^2)/(1-x)^7, {x, 0, 40}], x] (* or *) LinearRecurrence[ {7, -21, 35, -35, 21, -7, 1}, {1, 13, 76, 295, 889, 2254, 5040}, 40] (* Harvey P. Dale, Mar 06 2023 *)
CROSSREFS
Cf. A114242.
Sequence in context: A051361 A114070 A005340 * A050485 A034265 A282643
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Nov 18 2005
STATUS
approved