[go: up one dir, main page]

login
Numbers m such that in binary representation m! doesn't contain 7!.
5

%I #13 Apr 07 2013 10:28:18

%S 0,1,2,3,4,5,6,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,

%T 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,

%U 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73

%N Numbers m such that in binary representation m! doesn't contain 7!.

%C Complement of A103680: A103675(a(n))=0, A103675(A103680(n))=1.

%C Last term is probably 5153, since all numbers from 5154 to 5*10^5 do not belong to the sequence. - _Giovanni Resta_, Apr 07 2013

%H <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%o (PARI) is(n)=n=n!; while(n>5039, my(e=valuation(n, 2), e1=valuation((n>>=e)+1, 2)); n>>=e1; if(e>3 && e1==2 && bitand(n, 127)==78, return(0))); 1 \\ _Charles R Greathouse IV_, Apr 07 2013

%Y Cf. A102730, A036603, A007088, A000142, A103677, A103679.

%K base,nonn

%O 1,3

%A _Reinhard Zumkeller_, Feb 12 2005