[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103448
a(n) = Sum_{k=0..n} Moebius(binomial(n,k)).
3
1, 2, 1, 0, 3, 2, 6, 4, 1, 2, 6, 4, 0, -6, 8, 6, 2, -2, 2, -4, 4, 10, 4, 8, 0, 4, 8, 2, 4, 0, -2, -4, 2, 4, 0, 4, 2, -4, 10, 4, 0, -8, 6, -2, 4, -4, 8, 2, 2, 2, 2, 4, 6, 2, 0, 6, 2, 2, 2, -6, 0, 6, 4, 8, 2, 4, 2, 0, 0, 8, -4, -2, 2, 4, 2, 0, -2, 14, 10, -2, 2, 2, 4, 2, 4, -2, 0, 8, 4, 2, 2, -2, 6, 0, -6, 14, 2, 0, 2, 2, 2, 4, 0, 2, -2
OFFSET
0,2
COMMENTS
Row sums of A103447.
LINKS
FORMULA
a(n) = Sum_{k=0..n} Moebius(binomial(n,k)).
a(n) = Sum_{k=0..n} A008683(A007318(n,k)).
EXAMPLE
a(4)=3 because mu(1) + mu(4) + mu(6) + mu(4) + mu(1) = 1 + 0 + 1 + 0 + 1 = 3.
MATHEMATICA
Table[Sum[MoebiusMu[Binomial[n, k]], {k, 0, n}], {n, 0, 120}] (* G. C. Greubel, Jun 16 2021 *)
PROG
(Magma) [(&+[ MoebiusMu(Binomial(n, k)): k in [0..n]]): n in [0..120]]; // G. C. Greubel, Jun 16 2021
(Sage) [sum(moebius(binomial(n, k)) for k in (0..n)) for n in (0..120)] # G. C. Greubel, Jun 16 2021
(PARI) a(n) = sum(k=0, n, moebius(binomial(n, k))); \\ Michel Marcus, Jun 17 2021
CROSSREFS
KEYWORD
sign
AUTHOR
Emeric Deutsch, Feb 07 2005
STATUS
approved