Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jul 22 2024 15:24:21
%S 1,2,4,6,10,14,22,22,30,46,74,94,90,102,130,170,198,222,290,350,474,
%T 650,730,734,746,838,962,1214,2138,2582,1890,1830,2526,3498,4746,6842,
%U 5098,6358,8178,10634,8650,9782,13634,14438,17178,20202,22170,21422,16298
%N Sum of the numbers of unitary divisors of the binomial coefficients C(n,k), k=0..n.
%C Row sums of the triangle A103444.
%e a(3) = 6 because the divisors of 1,3,3,1 are {1},{1,3},{1,3},{1}, respectively, all of which are unitary, and 1 + 2 + 2 + 1 = 6.
%p with(numtheory):unitdiv:=proc(n) local A, k: A:={}: for k from 1 to tau(n) do if gcd(divisors(n)[k],n/divisors(n)[k])=1 then A:=A union {divisors(n)[k]} else A:=A fi od end: T:=proc(n,k) if k<=n then nops(unitdiv(binomial(n,k))) else 0 fi end: for n from 0 to 50 do b[n]:=[seq(T(n,k),k=0..n)] od: seq(sum(b[n][j],j=1..n+1),n=0..50);
%t a[n_] := Sum[2^PrimeNu[Binomial[n, k]], {k, 0, n}]; Array[a, 50, 0] (* _Amiram Eldar_, Jul 22 2024 *)
%o (PARI) a(n) = sum(k = 0, n, 2^omega(binomial(n, k))); \\ _Amiram Eldar_, Jul 22 2024
%Y Cf. A007318, A034444, A103444.
%K nonn
%O 0,2
%A _Emeric Deutsch_, Feb 06 2005