[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of decompositions of 2n+1 into 2p+q, where p and q are both odd primes (A065091).
12

%I #8 Feb 22 2014 17:55:30

%S 0,0,0,1,1,2,1,3,2,2,2,3,3,4,2,4,2,4,4,4,4,5,3,4,6,5,3,6,3,3,6,6,5,7,

%T 3,4,7,6,5,8,3,7,7,7,4,10,5,6,9,5,5,11,5,6,9,7,6,10,7,5,11,8,6,10,5,6,

%U 12,8,5,12,5,9,12,8,6,13,7,6,11,9,9,16,4,8,12,9,9,13,7,6,13,11,8,16,6

%N Number of decompositions of 2n+1 into 2p+q, where p and q are both odd primes (A065091).

%C Conjecture: all items for n>=4 are greater than or equal to 1. This is a stronger conjecture than the Goldbach conjecture.

%H R. J. Mathar, <a href="/A103151/b103151.txt">Table of n, a(n) for n = 1..10777</a>

%e For 2*4+1 = 9 we have just one such composition: 9 = 2*3+3, so a(4)=1;

%e For 2*14+1 = 29 we have four such compositions: 29 = 2*3+23 = 2*5+19 = 2*11+7 = 2*13+3, so a(14)=4.

%p A103151 := proc(n)

%p local s,a,q;

%p a := 0 ;

%p s := 2*n+1 ;

%p for pi from 2 do

%p q := s-2*ithprime(pi) ;

%p if q <=2 then

%p return a ;

%p else

%p if isprime(q) then

%p a := a+1 ;

%p end if;

%p end if;

%p end do:

%p end proc: # _R. J. Mathar_, Feb 22 2014

%t Do[m = 3; ct = 0; While[(m*2) < n, If[PrimeQ[m], cp = n - (2*m); If[ PrimeQ[cp], ct = ct + 1]]; m = m + 2]; Print[ct], {n, 9, 299, 2}]

%o (Scheme, with Aubrey Jaffer's SLIB Scheme library from http://www.swiss.ai.mit.edu/~jaffer/SLIB.html )

%o (define (A103151 n) (let loop ((i 2) (z 0)) (let ((p1 (A000040 i))) (cond ((>= p1 n) z) ((prime? (+ 1 (* 2 (- n p1)))) (loop (+ 1 i) (+ 1 z))) (else (loop (+ 1 i) z))))))

%Y A001031, A103152.

%K nonn

%O 1,6

%A _Lei Zhou_, Feb 09 2005

%E Edited and Scheme-code added by _Antti Karttunen_, Jun 19 2007