[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102587
T(n, k) = (-1)^n*2*[x^k] ChebyshevT(n, (1 - x)/2) with T(0,0) = 1, for 0 <= k <= n, triangle read by rows.
7
1, -1, 1, -1, -2, 1, 2, 0, -3, 1, -1, 4, 2, -4, 1, -1, -5, 5, 5, -5, 1, 2, 0, -12, 4, 9, -6, 1, -1, 7, 7, -21, 0, 14, -7, 1, -1, -8, 12, 24, -30, -8, 20, -8, 1, 2, 0, -27, 9, 54, -36, -21, 27, -9, 1, -1, 10, 15, -60, -15, 98, -35, -40, 35, -10, 1, -1, -11, 22, 66, -99, -77, 154, -22, -66, 44, -11, 1, 2, 0, -48, 16, 180, -120, -196, 216, 9
OFFSET
0,5
COMMENTS
Previous name: Triangular matrix, read by rows, equal to the matrix inverse of triangle A094531, which is the right-hand side of trinomial table A027907.
Riordan array ((1-x^2)/(1+x+x^2),x/(1+x+x^2)). - Paul Barry, Jul 14 2005
Inverse of A094531. Rows sums are 1,0,-2,0,2,0,-2,... with g.f. (1-x^2)/(1+x^2). Diagonal sums are (-1)^n*C(1,n) with g.f. 1-x. - Paul Barry, Jul 14 2005
Row sums form the period 4 sequence: {1, 0,-2,0,2, 0,-2,0,2, ...}. Absolute row sums form A102588.
Sum_{k=0..n} T(n,k)^2 = 2*A002426(n) for n>0.
LINKS
P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
FORMULA
T(n,k) = T(n-1,k-1) - T(n-1,k) - T(n-2,k), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,0) = -1, T(2,1) = -2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 22 2014
From Peter Bala, Jun 29 2015: (Start)
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = x/(1 + x + x^2) and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = ( 1 - x + sqrt(1 - 2*x - 3*x^2) )/2. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ). (End)
EXAMPLE
Rows begin:
[1],
[ -1,1],
[ -1,-2,1],
[2,0,-3,1],
[ -1,4,2,-4,1],
[ -1,-5,5,5,-5,1],
[2,0,-12,4,9,-6,1],
[ -1,7,7,-21,0,14,-7,1],
[ -1,-8,12,24,-30,-8,20,-8,1],
[2,0,-27,9,54,-36,-21,27,-9,1],
[ -1,10,15,-60,-15,98,-35,-40,35,-10,1],
[ -1,-11,22,66,-99,-77,154,-22,-66,44,-11,1],...
MATHEMATICA
Table[If[n==0, 1, CoefficientList[(-1)^n 2 ChebyshevT[n, (1-x)/2], x]], {n, 0, 9}] // Flatten (* Peter Luschny, Mar 07 2018 *)
PROG
(PARI) {T(n, k)=local(A); A=matrix(n+1, n+1, r, c, if(r<c-1, 0, polcoeff((1+x+x^2)^(r-1), r+c-2))); return((A^-1)[n+1, k+1])}
(PARI) tabl(nn) = {my(m = matrix(nn, nn, n, k, n--; k--; sum(j=0, n, binomial(n, j)*binomial(j, n-k-j)))^(-1)); for (n=1, nn, for (k=1, n, print1(m[n, k], ", "); ); print(); ); } \\ Michel Marcus, Jun 30 2015
CROSSREFS
Cf. A094531 (matrix inverse), A102588, A002426.
Sequence in context: A071485 A127969 A081733 * A272608 A257460 A339471
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Jan 22 2005
EXTENSIONS
New name by Peter Luschny, Mar 07 2018
STATUS
approved