OFFSET
1,2
COMMENTS
Numbers n such that (250*10^n - 61)/9 is prime.
Numbers n such that digit 2 followed by n >= 0 occurrences of digit 7 followed by digit 1 is prime.
Numbers corresponding to terms <= 935 are certified primes.
a(12) > 10^5. - Robert Price, Feb 27 2015
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A098960(n) - 1.
EXAMPLE
271 is prime, hence 1 is a term.
MATHEMATICA
Do[If[PrimeQ[(250*10^n-61)/9], Print[n]], {n, 1, 3250}] (* Stefan Steinerberger, Jan 31 2006 *)
PROG
(PARI) a=21; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a+61)
(PARI) for(n=0, 1500, if(isprime((250*10^n-61)/9), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 23 2004
EXTENSIONS
a(7) from Stefan Steinerberger, Jan 31 2006
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(10)-a(11) from Robert Price, Feb 27 2015
STATUS
approved