[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101908
Triangle read by rows: Characteristic polynomials of lower triangular Bell number matrix.
1
1, -1, 1, -3, 2, 1, -8, 17, -10, 1, -23, 137, -265, 150, 1, -75, 1333, -7389, 13930, -7800, 1, -278, 16558, -277988, 1513897, -2835590, 1583400, 1, -1155, 260364, -14799354, 245309373, -1330523259, 2488395830, -1388641800, 1, -5295, 5042064, -1092706314, 61514634933, -1016911327479
OFFSET
1,4
COMMENTS
Roots of the polynomials are the Bell numbers (A000110) except the leading term.
Second column of the triangle = A024716(n) (partial sums of Bell numbers).
Generation of the triangle: n-th row polynomials are the characteristic polynomial of the lower triangular matrix of the first n rows of the Bell triangle.
So from triangle
1
1 2
2 3 5
5 7 10 15
...
we get characteristic polynomials
x - 1
x^2 - 3*x + 2
x^3 - 8*x^2 + 17*x - 10
x^4 - 23*x^3 + 137*x^2 - 265*x + 150
...
All polynomials (except the first) evaluated at 2 give zero.
EXAMPLE
The characteristic polynomial of the 3X3 matrix
1 0 0
1 2 0
2 3 5
= x^3 - 8x^2 + 17x - 10, with roots (1, 2, 5).
MATHEMATICA
m[0, 0] = 1; m[n_, 0] := m[n, 0] = m[n-1, n-1]; m[n_, k_] := m[n, k] = m[n, k-1] + m[n-1, k-1]; m[n_, k_] /; k > n = 0; bm[n_] := Table[m[n0, k], {n0, 0, n}, {k, 0, n}]; row[n_] := (coes = Reverse[ CoefficientList[ CharacteristicPolynomial[ bm[n], x], x]]; Sign[coes[[1]]]*coes); Flatten[ Table[ row[n], {n, 0, 7}]] (* Jean-François Alcover, Sep 13 2012 *)
PROG
(PARI) BM(n) = M=matrix(n, n); M[1, 1]=1; if(n>1, M[2, 1]=1; M[2, 2]=2); \ for(l=3, n, M[l, 1]=M[l-1, l-1]; for(k=2, l, M[l, k]=M[l, k-1]+M[l-1, k-1])); M for(i=1, 10, print(charpoly(BM(i)))) for(i=1, 10, print(round(real(polroots(charpoly(BM(i)))))))
CROSSREFS
Sequence in context: A196846 A375041 A101413 * A290310 A086963 A079749
KEYWORD
sign,tabl
AUTHOR
Lambert Klasen (lambert.klasen(AT)gmx.net) and Gary W. Adamson, Jan 28 2005
STATUS
approved