[go: up one dir, main page]

login
A101294
Numbers n such that omega(n-2) = omega(n-1) = omega(n) = omega(n+1) = omega(n+2).
2
56, 93, 94, 117, 143, 144, 145, 146, 160, 207, 214, 215, 216, 217, 297, 303, 325, 326, 327, 393, 537, 687, 723, 801, 1137, 1347, 1467, 1537, 1713, 1943, 1983, 2103, 2217, 2304, 2305, 2306, 2427, 2643, 2666, 2716, 3867, 3914, 4413
OFFSET
1,1
LINKS
EXAMPLE
143 is in the sequence because it has two unique prime factors (11 and 13), the same number as its two nearest neighbors on both sides (141 has 3 and 47, 142 has 2 and 71, 144 has 2 and 3 and 145 has 5 and 29).
MATHEMATICA
For[i=2, i<10000, If[And[Length[FactorInteger[i-2]]==Length[FactorInteger[i]], Length[FactorInteger[i-1]]==Length[FactorInteger[i]], Length[FactorInteger[i+1]]==Length[FactorInteger[i]], Length[FactorInteger[i+2]]==Length[FactorInteger[i]]], Print[i]]; i++ ]
Select[Range[600000], PrimeNu[# - 2] == PrimeNu[# - 1] == PrimeNu[#] == PrimeNu[# + 1] == PrimeNu[# + 2] &] (* G. C. Greubel, May 15 2017 *)
CROSSREFS
Sequence in context: A104394 A353281 A101935 * A280932 A039534 A360332
KEYWORD
easy,nonn
AUTHOR
Neil Fernandez, Dec 21 2004
EXTENSIONS
Edited by N. J. A. Sloane, Mar 17 2007
STATUS
approved