OFFSET
1,1
COMMENTS
Numbers n such that (790*10^n - 61)/9 is prime.
Numbers n such that digit 8 followed by n >= 0 occurrences of digit 7 followed by digit 1 is prime.
Numbers corresponding to terms <= 479 are certified primes.
a(12) > 10^5. - Robert Price, Oct 25 2015
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
FORMULA
a(n) = A103089(n+1) - 1.
EXAMPLE
8777771 is prime, hence 5 is a term.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(790*10^# - 61)/9] &] (* Robert Price, Oct 25 2015 *)
PROG
(PARI) a=81; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a+61)
(PARI) for(n=0, 1500, if(isprime((790*10^n-61)/9), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Nov 30 2004
EXTENSIONS
2 more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
a(9) from Kamada data by Ray Chandler, Apr 29 2015
a(10)-a(11) from Robert Price, Oct 25 2015
STATUS
approved