[go: up one dir, main page]

login
A109692
Triangle of coefficients in expansion of (1+x)*(1+3x)*(1+5x)*(1+7x)*...*(1+(2n-1)x).
9
1, 1, 1, 1, 4, 3, 1, 9, 23, 15, 1, 16, 86, 176, 105, 1, 25, 230, 950, 1689, 945, 1, 36, 505, 3480, 12139, 19524, 10395, 1, 49, 973, 10045, 57379, 177331, 264207, 135135, 1, 64, 1708, 24640, 208054, 1038016, 2924172, 4098240, 2027025
OFFSET
0,5
COMMENTS
Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 2, 3, 4, 5, 6, 7, 8, 9, ...] where DELTA is the operator defined in A084938.
T(n,k), 0 <= k <= n, is the number of elements in the Coxeter group B_n with absolute length k. - Jose Bastidas, Jul 14 2023
LINKS
FORMULA
T(n,m) = T(n-1,m) + (2*n-1)*T(n-1,m-1) with T(n,n) = (2*n-1)!! and T(n,0) = 1. - Johannes W. Meijer, Jun 08 2009
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
1, 4, 3;
1, 9, 23, 15;
1, 16, 86, 176, 105;
1, 25, 230, 950, 1689, 945;
1, 36, 505, 3480, 12139, 19524, 10395;
...
MAPLE
nmax:=8; mmax:=nmax: for n from 0 to nmax do a(n, n) := doublefactorial(2*n-1) od: for n from 0 to nmax do a(n, 0):=1 od: for n from 2 to nmax do for m from 1 to n-1 do a(n, m) := a(n-1, m) + (2*n-1)*a(n-1, m-1) od; od: seq(seq(a(n, m), m=0..n), n=0..nmax); # Johannes W. Meijer, Jun 08 2009, revised Nov 25 2012
CROSSREFS
Cf. A039758 (signed version). A028338 transposed.
Row sums: A000165.
Central terms: A293318.
Cf. A161198 (transposed scaled triangle version).
Sequence in context: A193011 A214859 A123160 * A039758 A157894 A172106
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Aug 08 2005
STATUS
approved