[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108435
Triangle read by rows: T(n,k) is number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have k returns to the x-axis.
2
2, 6, 4, 34, 24, 8, 238, 172, 72, 16, 1858, 1360, 624, 192, 32, 15510, 11444, 5520, 1952, 480, 64, 135490, 100520, 50040, 19136, 5600, 1152, 128, 1223134, 911068, 463512, 186416, 60320, 15168, 2688, 256, 11320066, 8457504, 4371808, 1821312, 629440, 178176, 39424, 6144, 512
OFFSET
1,1
COMMENTS
Number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and have k steps up to the first peak. Example: T(2,2)=4 because we have uudd, uUddd, Uuddd and UUdddd. Row sums yield A027307. T(n,1)=A108424(n). T(n,n)=2^n.
LINKS
Emeric Deutsch, Problem 10658: Another Type of Lattice Path, American Math. Monthly, 107, 2000, 368-370.
FORMULA
T(n, k)=[k/(n-k)][3*2^k*binomial(n-1, k)+sum(2^(n-1-j)*(5n-2k+j+1)binomial(n-1, j)binomial(2n-k-1, n+j)/(n+j+1), j=0..n-k-2)] if k<n; T(n, n)=2^n. G.f. =1/(1-tzA-tzA^2)-1, where A=1+zA^2+zA^3 or, equivalently, A=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
EXAMPLE
T(2,2)=4 because u(d)u(d), u(d)Ud(d), Ud(d)u(d) and Ud(d)Ud(d) (the steps d that return to the x-axis are shown between parentheses).
Triangle begins:
2;
6,4;
34,24,8;
238,172,72,16;
1858,1360,624,192,32;
...
MAPLE
T:=proc(n, k) if k<n then (k/(n-k))*(3*2^k*binomial(n-1, k)+sum(2^(n-1-j)*(5*n-2*k+j+1)*binomial(n-1, j)*binomial(2*n-k-1, n+j)/(n+j+1), j=0..n-k-2)) elif k=n then 2^n else 0 fi end: for n from 1 to 9 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form
MATHEMATICA
T[n_, k_] := Which[k < n, (k/(n - k))*(3*2^k*Binomial[n - 1, k] + Sum[2^(n - 1 - j)*(5*n - 2*k + j + 1)*Binomial[n - 1, j]*Binomial[2*n - k - 1, n + j]/(n + j + 1), {j, 0, n - k - 2}]), k == n, 2^n, True, 0];
Table[T[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 11 2024, after Maple code. *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jun 04 2005
EXTENSIONS
Keyword tabf changed to tabl by Michel Marcus, Apr 09 2013
STATUS
approved