[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107991
Complexity (number of maximal spanning trees) in an unoriented simple graph with nodes {1,2,...,n} and edges {i,j} if i + j > n.
3
1, 1, 1, 3, 8, 40, 180, 1260, 8064, 72576, 604800, 6652800, 68428800, 889574400, 10897286400, 163459296000, 2324754432000, 39520825344000, 640237370572800, 12164510040883200, 221172909834240000, 4644631106519040000, 93666727314800640000
OFFSET
1,4
COMMENTS
Proof of the formula: check that the associated combinatorial Laplacian has eigenvalues {0,..n-1}\ {floor((n+1)/2)} by exhibiting a basis of eigenvectors (which are very simple).
REFERENCES
N. Biggs, Algebraic Graph Theory, Cambridge University Press (1974).
LINKS
Niall Byrnes, Gary R. W. Greaves, and Matthew R. Foreman, Bootstrapping cascaded random matrix models: correlations in permutations of matrix products, arXiv:2405.02541 [math-ph], 2024. See p. 7.
FORMULA
a(n) = (n-1)!/floor((n+1)/2).
a(n+1) = n!/floor(n/2 + 1). - M. F. Hasler, Apr 21 2015
1/a(n+1) is the coefficient of the power series of 3*exp(x)/4 + 1/4*exp(-x) + x/2*exp(x) ; this function is the sum of f_n(x) where f_0(x)=cosh(x) and f_{n+1} is the primitive of f_n. - Pierre-Alain Sallard, Dec 15 2018
EXAMPLE
a(1)=a(2)=a(3)=1 because the corresponding graphs are trees.
a(4)=3 because the corresponding graph is a triangle with one of its vertices adjacent to a fourth vertex.
MAPLE
a:=n->(n-1)!/floor((n+1)/2);
MATHEMATICA
Function[x, 1/x] /@
CoefficientList[Series[3*Exp[x]/4 + 1/4*Exp[-x] + x/2*Exp[x], {x, 0, 10}], x] (* Pierre-Alain Sallard, Dec 15 2018 *)
Table[(n - 1)! / Floor[(n + 1) / 2], {n, 1, 30}] (* Vincenzo Librandi, Dec 15 2018 *)
PROG
(PARI) A107991(n)=(n-1)!/round(n/2) \\ M. F. Hasler, Apr 21 2015
(Magma) [Factorial(n-1)/Floor((n+1)/2): n in [1..25]]; // Vincenzo Librandi, Dec 15 2018
(GAP) List([1..20], n->Factorial(n-1)/Int((n+1)/2)); # Muniru A Asiru, Dec 15 2018
(SageMath) [factorial(n-1)/floor((n+1)/2) for n in range(1, 24)] # Stefano Spezia, May 10 2024
CROSSREFS
Sequence in context: A260817 A262126 A110561 * A007175 A152394 A168468
KEYWORD
nonn
AUTHOR
Roland Bacher, Jun 13 2005
STATUS
approved