[go: up one dir, main page]

login
A107950
Boling's constant, the decimal expansion of Sum_{i>=1} i(i+1) / (2*Product_{j=0..i-1} i!/j!).
2
1, 8, 0, 5, 9, 1, 7, 4, 1, 8, 9, 8, 6, 6, 9, 1, 0, 1, 3, 9, 9, 7, 5, 0, 5, 3, 8, 5, 8, 5, 1, 0, 5, 0, 6, 8, 0, 9, 8, 9, 6, 5, 2, 5, 4, 5, 9, 0, 9, 6, 3, 4, 2, 8, 2, 5, 7, 5, 9, 5, 8, 8, 5, 8, 5, 8, 8, 2, 9, 7, 8, 7, 3, 6, 3, 4, 9, 1, 4, 0, 6, 7, 9, 2, 0, 7, 5, 9, 8, 7, 5, 7, 8, 1, 1, 8, 0, 7, 5, 1, 4, 9, 8, 2, 3
OFFSET
1,2
EXAMPLE
B=1.805917418986691013997505385851050680989652545909634282575958858...
MATHEMATICA
RealDigits[ Sum[i(i + 1)/2/Product[i!/j!, {j, 0, i - 1}], {i, 14}], 10, 111][[1]]
Clear[B]; B[m_] := B[m] = N[Sum[i*(1+i)/2*BarnesG[1+i]/i!^i, {i, 1, m}], 105]; m=2; While[B[m] != B[m-1], m++]; RealDigits[B[m]][[1]] (* Jean-François Alcover, Nov 18 2015 *)
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Robert G. Wilson v, May 28 2005
STATUS
approved