[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107451
Let m = 5 and set M = {{0, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0}, {0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 1}, {-1, m, (m + 1), -m*(m + 1), -m, (m + 2)}}. Let v[0] = {0, 1, 1, 2, 3, 5}, v[n] = M.v[n - 1]. Then a = Abs[v[n][[1]].
0
1, 1, 2, 3, 5, 29, 302, 2092, 12221, 66179, 341350, 1705958, 8333070, 40017287, 189643693, 889303635, 4134575230, 19086260759, 87581455636, 399845651745, 1817488787127, 8230050719153, 37144327008467, 167153266777585
OFFSET
0,3
COMMENTS
Based on a Markov chain with characteristic polynomial 1 - m* x - (m + 1) *x^2 + m*(m + 1)* x^3 + m* x^4 - (m + 2)* x^5 + x^6 with m=5.
This is a doubled Bombieri polynomial with real roots {{x -> -1.64378}, {x -> -0.425321}, {x -> 0.201585}, {x -> 0.395849}, {x -> 4.10318}, {x -> 4.36848}}. The base vector is Fibonacci-like.
FORMULA
G.f.: (10*x^10-44*x^9-86*x^8+246*x^7+198*x^6+58*x^5+18*x^4+24*x^3-6*x+1) / (x^6-5*x^5-6*x^4+30*x^3+5*x^2-7*x+1). - Colin Barker, May 17 2013
MATHEMATICA
M = {{0, 1, 0, 0, 0, 0}, {0, 0, 1, 0, 0, 0}, {0, 0, 0, 1, 0, 0}, {0, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 0, 1}, {-1, m, (m + 1), -m*(m + 1), -m, (m + 2)}} Det[M - x*IdentityMatrix[6]] m = 5; NSolve[Det[M - x*IdentityMatrix[6]] == 0, x] v[0] = {0, 1, 1, 2, 3, 5} v[n_] := v[n] = M.v[n - 1] a = Table[Abs[v[n][[1]]], {n, 1, 50}]
CROSSREFS
Sequence in context: A062167 A358896 A279189 * A093490 A073309 A226124
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, May 26 2005
EXTENSIONS
Edited by N. J. A. Sloane, Jun 16 2007
STATUS
approved