[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107100
Numerators of coefficients in g.f. that satisfies: [x^n] A(x)^(1/n) = 0 for all n>1, with a(0)=a(1)=1.
2
1, 1, 1, -1, -19, 17831, -64667, 1752946877, 796654376069593, -1318782726516512640001, 3482456481351141439684019, -6944717442120502790179764362411651, 32108006354107989164763518257678603933
OFFSET
0,5
COMMENTS
Sum_{n>=0} a(n) = 2.228747823105104822448312609661581467237449142548497707333713...
EXAMPLE
A(x) = 1 + x + 1/4*x^2 - 1/54*x^3 - 19/4608*x^4 +-...
A(x)^(1/2) = 1 + 1/2*x + 0*x^2 - 1/108*x^3 + 71/27648*x^4 -+...
A(x)^(1/3) = 1 + 1/3*x - 1/36*x^2 + 0*x^3 + 13/13824*x^4 -+...
A(x)^(1/4) = 1 + 1/4*x - 1/32*x^2 + 11/3456*x^3 + 0*x^4 -+...
Initial coefficients of A(x) are:
A107100/A107101 = {1, 1, 1/4, -1/54, -19/4608, 17831/10800000,
-64667/233280000, 1752946877/213462345600000,
796654376069593/71945836874956800000,
-1318782726516512640001/301100369020478344396800000,
3482456481351141439684019/3345559655783092715520000000000, ...}.
PROG
(PARI) {a(n)=local(A=1+x+x^2*O(x^n), C, D); for(k=2, n+1, C=polcoeff((A+t*x^k)^(1/k), k, x); D=(0-subst(C, t, 0))/(subst(C, t, 1)-subst(C, t, 0)); A=A+D*x^k); numerator(polcoeff(A, n))}
CROSSREFS
Cf. A107101.
Sequence in context: A186165 A198412 A110392 * A233233 A203581 A125043
KEYWORD
frac,sign
AUTHOR
Paul D. Hanna, May 12 2005
STATUS
approved