[go: up one dir, main page]

login
A106435
a(n) = 3*a(n-1) + 3*a(n-2), a(0)=0, a(1)=3.
12
0, 3, 9, 36, 135, 513, 1944, 7371, 27945, 105948, 401679, 1522881, 5773680, 21889683, 82990089, 314639316, 1192888215, 4522582593, 17146412424, 65006985051, 246460192425, 934401532428, 3542585174559, 13430960120961
OFFSET
0,2
COMMENTS
The first entry of the vector v[n] = M*v[n-1], where M is the 2 x 2 matrix [[0,3],[1,3]] and v[1] is the column vector [0,1]. The characteristic polynomial of the matrix M is x^2-3x-3.
LINKS
Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
Tanya Khovanova, Recursive Sequences
FORMULA
G.f.: 3*x/(1-3*x-3*x^2). - Philippe Deléham, Nov 19 2008
From G. C. Greubel, Mar 12 2020: (Start)
a(n) = 3^((n+1)/2) * Fibonacci(n, sqrt(3)), where F(n, x) is the Fibonacci polynomial.
a(n) = 3^((n+1)/2)*i^(1-n)*ChebyshevU(n-1, i*sqrt(3)/2). (End)
MAPLE
seq(coeff(series(3*x/(1-3*x-3*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Mar 12 2020
MATHEMATICA
LinearRecurrence[{3, 3}, {0, 3}, 30] (* G. C. Greubel, Mar 12 2020 *)
PROG
(PARI) a(n)=([0, 3; 1, 3]^n)[1, 2]
(Haskell)
a106435 n = a106435_list !! n
a106435_list = 0 : 3 : map (* 3) (zipWith (+) a106435_list (tail
a106435_list))
-- Reinhard Zumkeller, Oct 15 2011
(Magma) a:=[0, 3]; [n le 2 select a[n] else 3*Self(n-1) + 3*Self(n-2) : n in [1..24]]; // Marius A. Burtea, Jan 21 2020
(Magma) R<x>:=PowerSeriesRing(Rationals(), 25); Coefficients(R!(3*x/(1-3*x-3*x^2))); // Marius A. Burtea, Jan 21 2020
(Sage) [3^((n+1)/2)*i^(1-n)*chebyshev_U(n-1, i*sqrt(3)/2) for n in (0..30)] # G. C. Greubel, Mar 12 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, May 29 2005
EXTENSIONS
Edited by N. J. A. Sloane, May 20 2006 and May 29 2006
Offset corrected by Reinhard Zumkeller, Oct 15 2011
STATUS
approved