[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106404
Number of even semiprimes dividing n.
5
0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 1, 0, 2, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 2, 0
OFFSET
1,12
COMMENTS
Also the number of prime divisors p|n such that n/p is even. - Gus Wiseman, Jun 06 2018
LINKS
FORMULA
a(n) = A086971(n) - A106405(n).
a(A100484(n)) = 1.
a(A005408(n)) = 0.
a(A005843(n)) > 0 for n>1.
a(2n) = omega(n), a(2n+1) = 0, where omega(n) is the number of distinct prime divisors of n, A001221. - Franklin T. Adams-Watters, Jun 09 2006
a(n) = card { d | d*p = n, d even, p prime }. - Peter Luschny, Jan 30 2012
O.g.f.: Sum_{p prime} x^(2p)/(1 - x^(2p)). - Gus Wiseman, Jun 06 2018
EXAMPLE
a(60) = #{4, 6, 10} = #{2*2, 2*3, 2*5} = 3.
MATHEMATICA
Table[Length[Select[Divisors[n], PrimeQ[#]&&EvenQ[n/#]&]], {n, 100}] (* Gus Wiseman, Jun 06 2018 *)
Table[Count[Divisors[n], _?(EvenQ[#]&&PrimeOmega[#]==2&)], {n, 110}] (* Harvey P. Dale, May 04 2021 *)
a[n_] := If[EvenQ[n], PrimeNu[n/2], 0]; Array[a, 100] (* Amiram Eldar, Jun 26 2022 *)
PROG
(Sage)
def A106404(n):
return add(1-(n/d)%2 for d in divisors(n) if is_prime(d))
print([A106404(n) for n in (1..105)]) # Peter Luschny, Jan 30 2012
(PARI) a(n)=if(n%2, 0, omega(n/2)) \\ Charles R Greathouse IV, Jan 30 2012
(Haskell)
a106404 n = length [d | d <- takeWhile (<= n) a100484_list, mod n d == 0]
-- Reinhard Zumkeller, Jan 31 2012
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 02 2005
STATUS
approved