[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106349
Primes indexed by semiprimes.
29
7, 13, 23, 29, 43, 47, 73, 79, 97, 101, 137, 139, 149, 163, 167, 199, 227, 233, 257, 269, 271, 293, 313, 347, 373, 389, 421, 439, 443, 449, 467, 487, 491, 499, 577, 607, 631, 647, 653, 661, 673, 677, 727, 751, 757, 811, 821, 823, 829, 839, 907, 929, 937, 947
OFFSET
1,1
COMMENTS
This is the sequence of the k-th prime for k = {4,6,9,10,14,15,21,22,25,26,33,34,35,38,39,46,49,51,...}. Not to be confused with A106350: semiprimes indexed by primes.
LINKS
Paul Kinlaw, Megan Triplett, and William Tripp, Almost Primes of Almost Prime Index, INTEGERS, Vol 24 (2024), Article #A99.
FORMULA
a(n) = prime(semiprime(n)).
a(n) = A000040(A001358(n)).
pi(a(n)) = p*q for some primes p and q.
Sum_{n>=1} 1/a(n) is in the interval (0.9910, 0.9915) (Kinlaw et al., 2024, Theorem 6, p. 11). - Amiram Eldar, Nov 09 2024
EXAMPLE
a(1) = 7 because semiprime(1) = 4, so prime(semiprime(1)) = prime(4) = 7.
MATHEMATICA
Prime@ Select[Range@ 161, PrimeOmega@ # == 2 &] (* or *) Select[Prime@ Range@ 161, PrimeOmega@ PrimePi@ # == 2 &] (* Michael De Vlieger, Nov 28 2015 *)
PROG
(Magma) [NthPrime(n): n in [2..200] | &+[d[2]: d in Factorization(n)] eq 2]; // Vincenzo Librandi, Nov 28 2015
(PARI) lista(nn) = select(x->(bigomega(primepi(x))==2), primes(nn)); \\ Michel Marcus, Nov 29 2015
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Apr 29 2005
STATUS
approved