[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105947
a(n) = C(n+6,n)*C(n+4,4).
0
1, 35, 420, 2940, 14700, 58212, 194040, 566280, 1486485, 3578575, 8016008, 16893240, 33786480, 64574160, 118605600, 210327264, 361499985, 604167795, 984569740, 1568220500, 2446423980, 3744526500, 5632263000, 8336601000, 12157543125, 17487410031, 24834191760
OFFSET
0,2
LINKS
FORMULA
G.f.: (15*x^4+80*x^3+90*x^2+24*x+1) / (1-x)^11. [Colin Barker, Jan 28 2013]
From Wesley Ivan Hurt, Jan 27 2022: (Start)
a(n) = (17280 + 78336*n + 152376*n^2 + 167780*n^3 + 116150*n^4 + 52983*n^5 +
16173*n^6 + 3270*n^7 + 420*n^8 + 31*n^9 + n^10)/17280.
a(n) = 11*a(n-1)-55*a(n-2)+165*a(n-3)-330*a(n-4)+462*a(n-5)-462*a(n-6)+330*a(n-7)-165*a(n-8)+55*a(n-9)-11*a(n-10)+a(n-11). (End)
From Amiram Eldar, Sep 08 2022: (Start)
Sum_{n>=0} 1/a(n) = 224*Pi^2 - 55244/25.
Sum_{n>=0} (-1)^n/a(n) = 12*Pi^2 + 512*log(2)/5 - 4711/25. (End)
EXAMPLE
If n=0 then C(0+6,0)*C(0+4,4) = C(6,0)*C(4,4) = 1*1 = 1.
If n=10 then C(10+6,10)*C(10+4,4) = C(16,10)*C(14,4) = 8008*1001 = 8016008.
MATHEMATICA
Table[Binomial[n+6, n]Binomial[n+4, 4], {n, 0, 30}] (* or *) LinearRecurrence[ {11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {1, 35, 420, 2940, 14700, 58212, 194040, 566280, 1486485, 3578575, 8016008}, 30] (* Harvey P. Dale, May 21 2014 *)
CROSSREFS
Cf. A062196.
Sequence in context: A075664 A133317 A322879 * A183846 A219936 A298946
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Apr 27 2005
EXTENSIONS
Terms from a(8) onwards corrected by Colin Barker, Jan 28 2013
Second example corrected by Colin Barker, Jan 28 2013
STATUS
approved