[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105867
A generalized Chebyshev transform of the Jacobsthal numbers.
0
0, 1, 1, 7, 11, 47, 95, 327, 759, 2343, 5863, 17095, 44551, 126023, 335687, 934343, 2518215, 6948807, 18846663, 51765703, 140875207, 385980871, 1052314055, 2879386055, 7857807815, 21485572551, 58664391111, 160344666567
OFFSET
0,4
COMMENTS
Apply the Riordan array (1/(1-2x^2),x/(1-2x^2)) to A001045.
FORMULA
G.f.: x/(1-x-6x^2+2x^3+4x^4); a(n)=sum{k=0..floor(n/2), 2^k*C(n-k, k)*A001045(n-2k)}; a(n)=sqrt(3)(sqrt(3)+1)^(n+1)/18+sqrt(3)(sqrt(3)-1)^(n+1)(-1)^n/18-2^(n+1)(-1)^n/9-1/9.
CROSSREFS
Sequence in context: A062209 A086828 A117392 * A166653 A057290 A003599
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 23 2005
STATUS
approved