[go: up one dir, main page]

login
A105584
Fixed point of the morphism 1 -> 34, 2 -> 32, 3 -> 12, 4 -> 14, starting from a(0) = 1.
0
1, 2, 1, 4, 1, 2, 3, 2, 1, 2, 1, 4, 3, 4, 1, 4, 1, 2, 1, 4, 1, 2, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 1, 2, 1, 4, 1, 2, 3, 2, 1, 2, 1, 4, 3, 4, 1, 4, 3, 4, 3, 2, 3, 4, 1, 4, 1, 2, 1, 4, 3, 4, 1, 4, 1, 2, 1, 4, 1, 2, 3, 2, 1, 2, 1, 4, 3, 4, 1, 4, 1, 2, 1, 4, 1, 2, 3, 2, 3, 4, 3, 2, 1, 2, 3, 2, 3, 4, 3, 2, 3, 4, 1, 4, 3
OFFSET
0,2
COMMENTS
A triangle space fill substitution: characteristic polynomial:x^4-2*x^3-2*x^2-4*x.
This triangle set was obtained by shifting the Heighway's dragon matrix about: M(Heighways's)={{1, 1, 0, 0}, {0, 1, 1, 0}, {0, 0, 1, 1}, {1, 0, 0, 1}} M(triangle)={{0, 0, 1, 1}, {0, 1, 1, 0}, {1, 1, 0, 0}, {1, 0, 0, 1}} This result is a permutation of the rows of the matrix. I have obtained three triangle sets and two Heighway's sets by experiments like these.
LINKS
F. M. Dekking, Recurrent Sets, Advances in Mathematics, vol. 44, no.1, April 1982, page 96, section 4.11.
MATHEMATICA
Flatten[ Nest[ Flatten[ # /. {1 -> {3, 4}, 2 -> {3, 2}, 3 -> {1, 2}, 4 -> {1, 4}} &], {1}, 8]] (* Robert G. Wilson v, May 07 2005 *)
CROSSREFS
Sequence in context: A323300 A349128 A366450 * A072064 A105498 A179289
KEYWORD
nonn
AUTHOR
Roger L. Bagula, May 03 2005
EXTENSIONS
Edited by Robert G. Wilson v, May 07 2005
STATUS
approved