[go: up one dir, main page]

login
A105420
Number of partitions of n into 3-smooth parts.
7
1, 1, 2, 3, 5, 6, 10, 12, 18, 23, 31, 38, 53, 63, 82, 100, 128, 152, 194, 228, 284, 336, 410, 478, 586, 678, 814, 947, 1127, 1296, 1539, 1761, 2070, 2372, 2764, 3146, 3667, 4153, 4796, 5437, 6249, 7044, 8080, 9080, 10358, 11636, 13208, 14778, 16762, 18698
OFFSET
0,3
COMMENTS
See A062051 for partitions into distinct 3-smooth numbers.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 121 terms from Jean-François Alcover)
FORMULA
A117222(n) = a(A003586(n)). - Reinhard Zumkeller, Mar 04 2006
EXAMPLE
n=10: there are 11 partitions of 10 with at least one part not of the form 2^i*3^j: 10, 7+3, 7+2+1, 7+1+1+1, 5+5, 5+4+1, 5+3+2, 5+3+1+1, 5+2+2+1, 5+2+1+1+1 and 5+1+1+1+1+1, therefore a(10) = A000041(10) - 11 = 42 - 11 = 31.
MATHEMATICA
nmax = 120;
S = Select[Range[nmax], Max[FactorInteger[#][[All, 1]]] <= 3 &];
P[n_] := IntegerPartitions[n, All, TakeWhile[S, # <= n &] ];
a[n_] := a[n] = P[n] // Length;
Table[Print[n, " ", a[n]]; a[n], {n, 0, nmax}] (* Jean-François Alcover, Oct 13 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 07 2005
STATUS
approved