[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093773
a(n) is the smallest integer at which the value of the "truncated Mertens function" (= A088004) equals the n-th prime number.
4
6, 10, 15, 22, 38, 51, 62, 77, 91, 123, 134, 159, 203, 206, 214, 253, 302, 305, 330, 341, 365, 395, 454, 489, 526, 542, 545, 554, 566, 586, 723, 753, 781, 794, 866, 870, 914, 933, 966, 1059, 1138, 1141, 1198, 1202, 1214, 1219, 1293, 1351, 1383, 1387, 1403
OFFSET
1,1
COMMENTS
Truncated Mertens function = summatory Moebius when argument runs through nonprimes. See A088004(n) = A002321(n) + A000720(n).
FORMULA
a(n) = A093772(prime(n)) = A093772(A000040(n)). Solutions to min{x; A002321(x) + A000720(x) = A000040(n) = prime(n)} = a(n).
MATHEMATICA
mer[x_] :=mer[x]=mer[x-1]+MoebiusMu[x]; mer[0]=0; $RecursionLimit=1000; t=Table[mer[w]+PrimePi[w], {w, 1, 1000}] Table[Min[Flatten[Position[t, Prime[j]]]], {j, 1, 200}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 28 2004
STATUS
approved