[go: up one dir, main page]

login
A093391
a(n) = floor(n/16) + floor((n+1)/16) + floor((n+2)/16) + floor((n+3)/16).
4
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 10, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 14, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 18, 19, 20, 20, 20, 20
OFFSET
0,15
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,-1,2,-1,0,-1,2,-1,0,-1,2,-1).
FORMULA
From R. J. Mathar, Mar 22 2011: (Start)
a(n) = +2*a(n-1) -a(n-2) -a(n-4) +2*a(n-5) -a(n-6) -a(n-8) +2*a(n-9) -a(n-10) -a(n-12) +2*a(n-13) -a(n-14).
G.f.: x^13/ ( (1+x^4)*(x^8+1)*(x-1)^2 ).
(End)
MATHEMATICA
Total/@(Floor/@(Partition[Range[0, 90], 4, 1]/16)) (* Harvey P. Dale, Sep 21 2013 *)
CoefficientList[Series[x^13 / ((1 + x^4) (x^8 + 1) (x - 1)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Feb 16 2018 *)
PROG
(Haskell)
a093391 n = sum $ map ((flip div 16) . (+ n)) [0..3] -- Reinhard Zumkeller, Oct 10 2013
(PARI) a(n) = n\16 + (n+1)\16 + (n+2)\16 + (n+3)\16 \\ Andrew Howroyd, Feb 15 2018
(Magma) [Floor(n/16)+Floor((n+1)/16)+Floor((n+2)/16)+Floor((n+3)/16): n in [0..100]]; // Vincenzo Librandi, Feb 16 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 28 2004
STATUS
approved