[go: up one dir, main page]

login
A092867
Number of regions in an equilateral triangular figure formed by the straight line segments connecting all vertices and all points that divide the sides into n equal parts.
62
1, 12, 75, 252, 715, 1572, 3109, 5676, 9291, 14556, 22081, 32502, 44935, 62868, 83286, 108384, 140152, 181710, 225565, 282978, 342792, 415614, 502318, 606642, 708505, 839874, 983007, 1141416, 1315102, 1529526, 1733476, 1994550, 2259420, 2559990, 2878053, 3237414, 3593521, 4047906, 4510590, 5002350, 5506918, 6128100, 6704800, 7414518, 8113992, 8858622, 9682927, 10626774, 11478142, 12519492
OFFSET
1,2
FORMULA
By the Euler characteristic, a(n) = A274586(n) - A274585(n) + 1 = A274586(n) - A092866(n) - 3n - 1.
EXAMPLE
a(2)=12 because the 6 line segments mutually connecting the vertices and the mid-side nodes form 12 congruent right triangles of two different sizes.
a(3)=75: 48 triangles, 24 quadrilaterals and 3 pentagons are formed. See pictures at Pfoertner link.
CROSSREFS
Cf. A092866 (number of intersections), A274585 (number of points both inside and on the triangle sides), A274586 (number of edges), A331911 (number of n-gons).
Cf. A092098 (regions in triangle cut by line segments connecting vertices with subdivision points on opposite side), A006533 (regions formed by all diagonals in regular n-gon), A002717 (triangles in triangular matchstick arrangement).
If the boundary points are in general position, we get A367117, A213827, A367118, A367119. - N. J. A. Sloane, Nov 09 2023
Sequence in context: A003368 A246767 A328526 * A292532 A053310 A368530
KEYWORD
more,nonn
AUTHOR
Hugo Pfoertner, Mar 15 2004
EXTENSIONS
a(1)=1 prepended by Max Alekseyev, Jun 29 2016
a(6)-a(50) from Cynthia Miaina Rasamimanananivo, Jun 28 2016, Jul 01 2016, Aug 05 2016, Aug 15 2016
Definition edited by N. J. A. Sloane, May 13 2020
STATUS
approved