[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092351
Molien series for certain 16-dimensional group of order 322560 arising from genus-2 weight enumerators of singly-even (but not necessarily self-dual or self-orthogonal) binary codes.
1
1, 1, 2, 3, 6, 9, 17, 27, 49, 79, 138, 225, 388, 634, 1069, 1750, 2904, 4706, 7677, 12302, 19715, 31137, 48994, 76133, 117637, 179718, 272692, 409558, 610615, 901812, 1322019, 1921168, 2771490, 3965936, 5635172, 7947036, 11132032, 15484913, 21402697, 29390457
OFFSET
0,3
LINKS
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
Index entries for linear recurrences with constant coefficients, signature (2, 1, -2, -2, 0, 2, -1, 3, -1, 0, 0, 3, -4, -5, 4, -4, 1, 2, 11, -5, 1, -2, -5, -1, -2, 0, -8, 19, 2, 2, -6, 3, -10, -7, 6, -11, 10, 6, 13, -10, 12, -6, -19, -4, 3, 7, -7, 20, -7, 7, 3, -4, -19, -6, 12, -10, 13, 6, 10, -11, 6, -7, -10, 3, -6, 2, 2, 19, -8, 0, -2, -1, -5, -2, 1, -5, 11, 2, 1, -4, 4, -5, -4, 3, 0, 0, -1, 3, -1, 2, 0, -2, -2, 1, 2, -1).
FORMULA
G.f. = f(x)/g(x) where
f(x) = x^80 - x^79 - x^78 + 2*x^76 + x^74 + x^73 + 2*x^72 + 5*x^70 + 3*x^69 + 13*x^68 + 10*x^67 + 29*x^66 + 31*x^65 + 66*x^64 + 61*x^63 + 121*x^62 + 138*x^61 + 232*x^60 + 258*x^59 + 396*x^58 + 456*x^57 + 654*x^56 + 739*x^55 + 974*x^54 + 1098*x^53 + 1400*x^52 + 1529*x^51 + 1859*x^50 + 2013*x^49 + 2363*x^48 + 2486*x^47 + 2831*x^46 + 2923*x^45 + 3222*x^44 + 3233*x^43 + 3461*x^42 + 3406*x^41 + 3570*x^40 + 3406*x^39 + 3461*x^38 + 3233*x^37 + 3222*x^36 + 2923*x^35 + 2831*x^34 + 2486*x^33 + 2363*x^32 + 2013*x^31 + 1859*x^30 + 1529*x^29 + 1400*x^28 + 1098*x^27 + 974*x^26 + 739*x^25 + 654*x^24 + 456*x^23 + 396*x^22 + 258*x^21 + 232*x^20 + 138*x^19 + 121*x^18 + 61*x^17 + 66*x^16 + 31*x^15 + 29*x^14 + 10*x^13 + 13*x^12 + 3*x^11 + 5*x^10 + 2*x^8 + x^7 + x^6 + 2*x^4 - x^2 - x + 1 and
g(x) = x^96 - 2*x^95 - x^94 + 2*x^93 + 2*x^92 - 2*x^90 + x^89 - 3*x^88 + x^87 - 3*x^84 + 4*x^83 + 5*x^82 - 4*x^81 + 4*x^80 - x^79 - 2*x^78 - 11*x^77 + 5*x^76 - x^75 + 2*x^74 + 5*x^73 + x^72 + 2*x^71 + 8*x^69 - 19*x^68 - 2*x^67 - 2*x^66 + 6*x^65 - 3*x^64 + 10*x^63 + 7*x^62 - 6*x^61 + 11*x^60 - 10*x^59 - 6*x^58 - 13*x^57 + 10*x^56 - 12*x^55 + 6*x^54 + 19*x^53 + 4*x^52 - 3*x^51 - 7*x^50 + 7*x^49 - 20*x^48 + 7*x^47 - 7*x^46 - 3*x^45 + 4*x^44 + 19*x^43 + 6*x^42 - 12*x^41 + 10*x^40 - 13*x^39 - 6*x^38 - 10*x^37 + 11*x^36 - 6*x^35 + 7*x^34 + 10*x^33 - 3*x^32 + 6*x^31 - 2*x^30 - 2*x^29 - 19*x^28 + 8*x^27 + 2*x^25 + x^24 + 5*x^23 + 2*x^22 - x^21 + 5*x^20 - 11*x^19 - 2*x^18 - x^17 + 4*x^16 - 4*x^15 + 5*x^14 + 4*x^13 - 3*x^12 + x^9 - 3*x^8 + x^7 - 2*x^6 + 2*x^4 + 2*x^3 - x^2 - 2*x + 1.
PROG
(Magma) K:=Rationals(); M:=MatrixAlgebra(K, 4); q1:=DiagonalMatrix(M, [1, -1, 1, -1]); p1:=DiagonalMatrix(M, [1, 1, -1, -1]); q2:=DiagonalMatrix(M, [1, 1, 1, -1]); h:=M![1, 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1]/2; H:=MatrixGroup<4, K|q1, q2, h, p1>;
permstomats:=function(L); n:=#L[1]; M:=MatrixAlgebra(Rationals(), n); a:=#L; MM:=[]; for i in [1..a] do Append(~MM, M ! 0); end for; for i in [1..a] do for j in [1..n] do MM[i][j][L[i][j]]:=1; end for; end for; return MM; end function;
MM:=MatrixAlgebra(K, 16); hh:=TensorProduct(M ! 1, h); qq1:=TensorProduct(M ! 1, q1); pp1:=TensorProduct(M ! 1, p1); qq2:=TensorProduct(M ! 1, q2);
perm:=sub<Sym(16) | (3, 5)*(4, 6)*(11, 13)*(12, 14), (3, 7)*(4, 8)*(11, 15)*(12, 16), (2, 10)*(4, 12)*(6, 14)*(8, 16), (2, 9)*(4, 11)*(6, 13)*(8, 15)>; Order(perm); pp:=Setseq(Generators(perm)); L:=[Eltseq(pp[1]), Eltseq(pp[2]), Eltseq(pp[3]), Eltseq(pp[4])];
ML:=permstomats(L); GG:=MatrixGroup<16, K | hh, qq1, qq2, ML[1], ML[2], ML[3], ML[4]>; Order(GG); MGG:=MolienSeries(GG);
CROSSREFS
Sequence in context: A365377 A048811 A142155 * A048812 A048813 A048814
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 20 2004
STATUS
approved