[go: up one dir, main page]

login
Smallest prime between 2^n and 2^(n+1) having a minimal number of 1's in binary representation, A091936(n) - 2^n.
0

%I #9 Oct 31 2013 12:17:24

%S 0,1,3,1,5,3,3,1,9,9,5,3,17,33,3,1,2049,3,65,33,17,129,9,513,35,

%T 131073,32769,3,32769,3,65,81,17,513,16385,8193,9,2049,33554433,97,65,

%U 129,515,131073,129,32769,5,21,1073741825,8388609,65,2097153,5,8589934593,3,81

%N Smallest prime between 2^n and 2^(n+1) having a minimal number of 1's in binary representation, A091936(n) - 2^n.

%F A091936(n) - A000079(n).

%t (* First run the program for A091936 to define f[n] *) Join[{0}, Table[ f[n] - 2^n, {n, 2, 56}]] (* _Robert G. Wilson v_ *)

%Y Cf. A091936.

%K nonn,base

%O 1,3

%A _Robert G. Wilson v_, Feb 19 2004