[go: up one dir, main page]

login
A091315
Number of orbits of length n under the map whose periodic points are counted by A061684.
0
1, 2, 21, 402, 13805, 761154, 62523664, 7237970648, 1132600004910, 231900134422880, 60528794385067778, 19713593779259862624, 7869483395065035685162, 3792402572391137423764584
OFFSET
1,2
COMMENTS
Old name was: A061684 appears to count the periodic points for a certain map. If so, then this is the sequence of the numbers of orbits of length n.
LINKS
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
FORMULA
If b(n) is the (n+1)th term in A061684, then a(n) = (1/n)*Sum_{d|n}mu(d)b(n/d).
EXAMPLE
The sequence A061684 begins 1,1,5,64,1613, so a(3)=(b(3)-b(1))/3=21.
CROSSREFS
Cf. A061684.
Sequence in context: A216281 A263625 A245686 * A359716 A087546 A090729
KEYWORD
nonn
AUTHOR
Thomas Ward, Feb 24 2004
EXTENSIONS
Name clarified by Michel Marcus, May 14 2015
STATUS
approved