[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primitive abundant numbers: abundant numbers (A005101) having no abundant proper divisor.
53

%I #36 Nov 15 2017 04:29:14

%S 12,18,20,30,42,56,66,70,78,88,102,104,114,138,174,186,196,222,246,

%T 258,272,282,304,308,318,354,364,366,368,402,426,438,464,474,476,498,

%U 532,534,550,572,582,606,618,642,644,650,654,678,748,762,786,812,822

%N Primitive abundant numbers: abundant numbers (A005101) having no abundant proper divisor.

%C A080224(a(n)) = 1.

%C This is a supersequence of the primitive abundant number sequence A071395, since many of these numbers will be positive integer multiples of the perfect numbers (A000396). - _Timothy L. Tiffin_, Jul 15 2016

%C If the terms of A071395 are removed from this sequence, then the resulting sequence will be A275082. - _Timothy L. Tiffin_, Jul 16 2016

%H T. D. Noe, <a href="/A091191/b091191.txt">Table of n, a(n) for n = 1..10000</a>

%H P. Erdős, <a href="http://www.renyi.hu/~p_erdos/1934-04.pdf">On the density of the abundant numbers</a>, J. London Math. Soc. 9 (1934), pp. 278-282.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AbundantNumber.html">Abundant Number</a>

%F Erdős shows that a(n) >> n log^2 n. - _Charles R Greathouse IV_, Dec 05 2012

%e 12 is a term since 1, 2, 3, 4, and 6 (the proper divisors of 12) are either deficient or perfect numbers, and thus not abundant. - _Timothy L. Tiffin_, Jul 15 2016

%p isA005101 := proc(n) is(numtheory[sigma](n) > 2*n ); end proc:

%p isA091191 := proc(n) local d; if isA005101(n) then for d in numtheory[divisors](n) minus {1,n} do if isA005101(d) then return false; end if; end do: return true; else false; end if; end proc:

%p for n from 1 to 200 do if isA091191(n) then printf("%d\n",n) ; end if;end do: # _R. J. Mathar_, Mar 28 2011

%t t = {}; n = 1; While[Length[t] < 100, n++; If[DivisorSigma[1, n] > 2*n && Intersection[t, Divisors[n]] == {}, AppendTo[t, n]]]; t (* _T. D. Noe_, Mar 28 2011 *)

%t Select[Range@ 840, DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] <= 2 # &, Most@ Divisors@ #] == 1 &] (* _Michael De Vlieger_, Jul 16 2016 *)

%o (PARI) is(n)=sumdiv(n,d,sigma(d,-1)>2)==1 \\ _Charles R Greathouse IV_, Dec 05 2012

%o (Haskell)

%o a091191 n = a091191_list !! (n-1)

%o a091191_list = filter f [1..] where

%o f x = sum pdivs > x && all (<= 0) (map (\d -> a000203 d - 2 * d) pdivs)

%o where pdivs = a027751_row x

%o -- _Reinhard Zumkeller_, Jan 31 2014

%Y Cf. A006038 (odd terms), A005101 (abundant numbers), A091192.

%Y Cf. A027751, A071395 (subsequence), supersequence of A275082.

%Y Cf. A294930 (characteristic function), A294890.

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, Dec 27 2003