OFFSET
1,3
COMMENTS
LINKS
W. Lang, First 8 rows.
FORMULA
a(n, m)= D(n)*((-1)^(n-m))*(fallfac(m+4, 5)^(n-1))/(product(fallfac(m+4, 5)-fallfac(r+4, 5), r=1..m-1)*product(fallfac(r+4, 5)-fallfac(m+4, 5), r=m+1..n)), with D(n) := A090436(n) and fallfac(n, m) := A008279(n, m) (falling factorials), 1<=m<=n else 0. (Replace in the denominator the first product by 1 if m=1 and the second one by 1 if m=n.)
EXAMPLE
[1]; [ -1,6]; [1,-48,147]; [ -5,1584,-24255,50176]; ...
A090217(2+3,3) = 9086400 = (1*(5*4*3*2*1)^2 - 48*(6*5*4*3*2)^2 + 147*(7*6*5*4*3)^2)/100.
a(3,2)= -48 = 100*(-1)*((6*5*4*3*2)^2)/((6*5*4*3*2-5*4*3*2*1)*(7*6*5*4*3-6*5*4*3*2)).
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Dec 01 2003
STATUS
approved