[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090435
Triangle of signed numbers used for the computation of the column sequences of triangle A090217.
3
1, -1, 6, 1, -48, 147, -5, 1584, -24255, 50176, 1, -1980, 121275, -1003520, 1571724, -41, 496980, -113458275, 2950635520, -16174611684, 20412000000, 45182, -3322062810, 2744728561050, -206756932157440, 3081396966348393, -12443694076800000, 13160600037440625, -1294492177294
OFFSET
1,3
COMMENTS
A090217(n+m,m)= sum(a(m,p)*((p+4)*(p+3)*(p+2)*(p+1)*p)^n,p=1..m)/D(m) with D(m) := A090436(m); m=1,2,..., n>=0.
FORMULA
a(n, m)= D(n)*((-1)^(n-m))*(fallfac(m+4, 5)^(n-1))/(product(fallfac(m+4, 5)-fallfac(r+4, 5), r=1..m-1)*product(fallfac(r+4, 5)-fallfac(m+4, 5), r=m+1..n)), with D(n) := A090436(n) and fallfac(n, m) := A008279(n, m) (falling factorials), 1<=m<=n else 0. (Replace in the denominator the first product by 1 if m=1 and the second one by 1 if m=n.)
EXAMPLE
[1]; [ -1,6]; [1,-48,147]; [ -5,1584,-24255,50176]; ...
A090217(2+3,3) = 9086400 = (1*(5*4*3*2*1)^2 - 48*(6*5*4*3*2)^2 + 147*(7*6*5*4*3)^2)/100.
a(3,2)= -48 = 100*(-1)*((6*5*4*3*2)^2)/((6*5*4*3*2-5*4*3*2*1)*(7*6*5*4*3-6*5*4*3*2)).
CROSSREFS
Sequence in context: A113392 A113387 A290316 * A136237 A308281 A347211
KEYWORD
sign,easy,tabl
AUTHOR
Wolfdieter Lang, Dec 01 2003
STATUS
approved