Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Jul 12 2024 19:58:59
%S 3,5,8,13,20,25,51,97,101,241,266,521,1279,1750,2204,2473,4193,5181,
%T 10080
%N Numbers k such that 5*k! - 1 is prime.
%C a(15) > 1879. - _Jinyuan Wang_, Feb 04 2020
%C a(17) > 3500. - _Michael S. Branicky_, Mar 06 2021
%H <a href="/index/Pri#primepop">Index entries for sequences related to numbers of primes of the form k*n!+-1</a>
%e k = 5 is here because 5*5! - 1 = 599 is prime.
%p for n from 0 to 1000 do if isprime(5*n! - 1) then print(n) end if end do;
%t Select[Range[550],PrimeQ[5#!-1]&] (* _Harvey P. Dale_, Nov 27 2013 *)
%o (PARI) is(n)=ispseudoprime(5*n!-1) \\ _Charles R Greathouse IV_, Jun 13 2017
%o (Python)
%o from sympy import isprime
%o from math import factorial
%o print([k for k in range(300) if isprime(5*factorial(k) - 1)]) # _Michael S. Branicky_, Mar 05 2021
%Y Cf. A002982, A076133, A076134, A099350, A180627, A180628, A180629, A180630, A180631.
%K nonn,more
%O 1,1
%A _Brian Kell_, Oct 12 2004
%E a(13)-a(14) from _Jinyuan Wang_, Feb 04 2020
%E a(15)-a(16) from _Michael S. Branicky_, Mar 05 2021
%E a(17)-a(18) from _Michael S. Branicky_, Apr 03 2023
%E a(19) from _Michael S. Branicky_, Jul 12 2024