[go: up one dir, main page]

login
A099196
a(n) = n*(2*n^8 + 84*n^6 + 798*n^4 + 1636*n^2 + 315)/2835.
13
0, 1, 18, 163, 996, 4645, 17718, 57799, 166344, 432073, 1030490, 2286955, 4772780, 9446125, 17852030, 32398735, 56730512, 96220561, 158611106, 254831667, 400030580, 614859189, 927052742, 1373356887, 2001853784, 2874747225, 4071671786, 5693596923, 7867403068, 10751213181
OFFSET
0,3
LINKS
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = n*(2*n^8 + 84*n^6 + 798*n^4 + 1636*n^2 + 315)/2835.
G.f.: x*(1+x)^8/(1-x)^10. [Colin Barker, May 01 2012]
a(n) = 18*a(n-1)/(n-1) + a(n-2) for n > 1. - Seiichi Manyama, Jun 06 2018
PROG
(PARI) concat(0, Vec(x*(1+x)^8/(1-x)^10 + O(x^40))) \\ Michel Marcus, Dec 14 2015
CROSSREFS
Similar sequences: A005900 (m=3), A014820(n-1) (m=4), A069038 (m=5), A069039 (m=6), A099193 (m=7), A099195 (m=8), A099197 (m=10).
Cf. A000332.
Sequence in context: A271899 A128797 A008418 * A041618 A055915 A208827
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 16 2004
EXTENSIONS
More terms from Michel Marcus, Dec 14 2015
STATUS
approved