Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #56 Sep 08 2022 08:45:15
%S 0,12,420,14280,485112,16479540,559819260,19017375312,646030941360,
%T 21946034630940,745519146510612,25325704946729880,860328449042305320,
%U 29225841562491651012,992818284675673829100,33726595837410418538400,1145711440187278556476512
%N a(n) = A001652(n) * A046090(n).
%C From _Ron Knott_, Nov 25 2013: (Start)
%C a(n) = 2*r*(r+1) which is also of form s(s+1) where the s is in A053141.
%C a(n) is an oblong number (A002378) which is twice another oblong number. (End)
%C 2*a(n)+1 and 4*a(n)+1 are both square. - _Paul Cleary_, Jun 23 2014
%H Reinhard Zumkeller, <a href="/A098602/b098602.txt">Table of n, a(n) for n = 0..255</a>
%H Nikola Adžaga, Andrej Dujella, Dijana Kreso, Petra Tadić, <a href="https://www.researchgate.net/publication/323934704_On_Diophantine_m-tuples_and_Dn-sets">On Diophantine m-tuples and D(n)-sets</a>, 2018.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35,-35,1).
%F a(n) = 2*A029549(n) = 2*A001109(n)*A001109(n+1).
%F a(n) = (A001653(n)^2 - 1)/2.
%F a(n) = A053141(n)^2 + A011900(n)^2 - 1.
%F For n>0, a(n) = A053141(2n) - 2*A001109(n-1)^2.
%F For n>0, a(n) = 3*(A001542(n)^2 - A001542(n-1)^2).
%F For n>0, a(n) = A053141(2n-1) + 2*(A001653(2n-1) - A001109(n-1)^2).
%F a(n+1) + a(n) = 3*A001542(n+1)^2.
%F a(n+1) - a(n) = A001542(2*n).
%F a(n+1)*a(n) = 4*(A001109(n)^4 - A001109(n)^2) = 4*A001110(n)*(A001110(n) - 1).
%F From _Ron Knott_, Nov 25 2013: (Start)
%F a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3).
%F G.f.: 12*x / ((1-x)*(x^2-34*x+1)). (End)
%F a(n) = (-6 + (3-2*sqrt(2))*(17+12*sqrt(2))^(-n)+(3+2*sqrt(2))*(17+12*sqrt(2))^n)/16. - _Colin Barker_, Mar 02 2016
%e a(1) = 12 = 2(2*3) = 3*4, a(2) = 420 = 2(14*15) = 20*21.
%t 2*Table[ Floor[(Sqrt[2] + 1)^(4n + 2)/32], {n, 0, 20} ] (* _Ray Chandler_, Nov 10 2004, copied incorrect program from A029549, revised Jul 09 2015 *)
%t RecurrenceTable[{a[n+3] == 35 a[n+2] - 35 a[n+1] + a[n], a[1] == 0, a[2] == 12, a[3] == 420}, a, {n, 1, 10}] (* _Ron Knott_, Nov 25 2013 *)
%t LinearRecurrence[{35, -35, 1}, {0, 12, 420}, 25] (* _T. D. Noe_, Nov 25 2013 *)
%t Table[(LucasL[4*n+2, 2] - 6)/16, {n,0,30}] (* _G. C. Greubel_, Jul 15 2018 *)
%o (PARI) concat(0, Vec(12*x/((1-x)*(1-34*x+x^2)) + O(x^20))) \\ _Colin Barker_, Mar 02 2016
%o (PARI) {a=1+sqrt(2); b=1-sqrt(2); Q(n) = a^n + b^n};
%o for(n=0, 30, print1(round((Q(4*n+2) - 6)/16), ", ")) \\ _G. C. Greubel_, Jul 15 2018
%o (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(12*x/((1-x)*(x^2-34*x+1)))); // _G. C. Greubel_, Jul 15 2018
%Y Cf. A002378, A053141.
%K nonn,easy
%O 0,2
%A _Charlie Marion_, Oct 26 2004
%E More terms from _Ray Chandler_, Nov 10 2004
%E Corrected by Bill Lam (bill_lam(AT)myrealbox.com), Feb 27 2006