[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098520
E.g.f. exp(x)*BesselI(1,4*x)/2.
3
0, 1, 2, 15, 52, 285, 1206, 6027, 27560, 134073, 633130, 3062279, 14676828, 71045845, 343195230, 1665555075, 8084777040, 39343835505, 191627687250, 934855945215, 4565076327300, 22318461756045, 109211684822790, 534907610833275, 2621997452787192, 12862364386480425, 63140696801700986
OFFSET
0,3
COMMENTS
Binomial transform of e.g.f. BesselI(1,4x)/2, or {0,1,0,12,0,160,0,2240,0,32256,0,...} with g.f. 2x/(1-16x^2+sqrt(1-16x^2)). The binomial transform of e.g.f. BesselI(1,2*sqrt(r)x)/sqrt(r) with g.f. 2x/(1-(2*sqrt(r)x)^2+sqrt(1-(2*sqrt(r)x)^2)) has g.f. 2x/(1-2x-((2*sqrt(r))^2-1)x^2+(1-x)*sqrt(1-2x-((2*sqrt(r))^2-1)x^2)).
LINKS
FORMULA
G.f.: 2*x/(1-2*x-15*x^2+(1-x)*sqrt(1-2*x-15*x^2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, k+1)4^k.
Conjecture: (n-1)*(n+1)*a(n) - n*(2n-1)*a(n-1) - 15*n*(n-1)*a(n-2) = 0. - R. J. Mathar, Dec 11 2011
a(n) ~ 5^(n+1/2)/(4*sqrt(2*Pi*n)). - Vaclav Kotesovec, Oct 15 2012
a(n) = 2^(n-1)*GegenbauerC(n-1, -n, -1/4). - Peter Luschny, May 08 2016
MAPLE
a := n -> simplify(2^(n-1)*GegenbauerC(n-1, -n, -1/4)):
seq(a(n), n=0..26); # Peter Luschny, May 08 2016
MATHEMATICA
Table[SeriesCoefficient[2*x/(1-2*x-15*x^2+(1-x)*Sqrt[1-2*x-15*x^2]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 15 2012 *)
PROG
(PARI) x='x+O('x^66); concat([0], Vec(2*x/(1-2*x-15*x^2+(1-x)*sqrt(1-2*x-15*x^2)))) \\ Joerg Arndt, May 11 2013
CROSSREFS
Sequence in context: A248544 A344819 A015520 * A216333 A378933 A056078
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 12 2004
STATUS
approved