[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that lcm(1,2,3,...,k) equals the denominator of the k-th harmonic number H(k).
18

%I #26 Mar 08 2021 02:09:16

%S 1,2,3,4,5,9,10,11,12,13,14,15,16,17,27,28,29,30,31,32,49,50,51,52,53,

%T 88,89,90,91,92,93,94,95,96,97,98,99,125,126,127,128,129,130,131,132,

%U 133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149

%N Numbers k such that lcm(1,2,3,...,k) equals the denominator of the k-th harmonic number H(k).

%C Numbers k such that A110566(k) = 1.

%C Shiu (2016) conjectured that this sequence is infinite. - _Amiram Eldar_, Feb 02 2021

%H Amiram Eldar, <a href="/A098464/b098464.txt">Table of n, a(n) for n = 1..10000</a>

%H Peter Shiu, <a href="https://arxiv.org/abs/1607.02863">The denominators of harmonic numbers</a>, arXiv:1607.02863 [math.NT], 2016.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HarmonicNumber.html">Harmonic Number</a>.

%t Select[Range[250], LCM@@Range[ # ]==Denominator[HarmonicNumber[ # ]]&]

%o (PARI) isok(n) = lcm(vector(n, i, i)) == denominator(sum(i=1, n, 1/i)); \\ _Michel Marcus_, Mar 07 2018

%o (Python)

%o from fractions import Fraction

%o from sympy import lcm

%o k, l, h, A098464_list = 1, 1, Fraction(1, 1), []

%o while k < 10**6:

%o if l == h.denominator:

%o A098464_list.append(k)

%o k += 1

%o l = lcm(l,k)

%o h += Fraction(1,k) # _Chai Wah Wu_, Mar 07 2021

%Y Cf. A002805 (denominator of H(n)), A003418 (lcm(1, 2, ..., n)), A110566.

%K easy,nonn

%O 1,2

%A _T. D. Noe_, Sep 09 2004