[go: up one dir, main page]

login
A098356
Multiplication table of the Fibonacci numbers read by antidiagonals.
2
0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 2, 0, 0, 3, 2, 2, 3, 0, 0, 5, 3, 4, 3, 5, 0, 0, 8, 5, 6, 6, 5, 8, 0, 0, 13, 8, 10, 9, 10, 8, 13, 0, 0, 21, 13, 16, 15, 15, 16, 13, 21, 0, 0, 34, 21, 26, 24, 25, 24, 26, 21, 34, 0, 0, 55, 34, 42, 39, 40, 40, 39, 42, 34, 55, 0, 0, 89, 55, 68, 63, 65, 64, 65
OFFSET
0,12
COMMENTS
Same as triangle T(n,k) = F(n)-F(k)*F(n-k+1), read by rows, F(i) = A000045(i). - Dale Gerdemann, Apr 24 2016
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11324 (rows 0 <= n <= 149, flattened)
FORMULA
T(n,k) = T(k,n) = A000045(n)*A000045(k) = A143211(n,k). - R. J. Mathar, Dec 11 2020
EXAMPLE
Table begins:
0 0 0 0 0 0 0 0 0 ...
0 1 1 2 3 5 8 13 21...
0 1 1 2 3 5 8 13 21...
0 2 2 4 6 10 16 26 42...
0 3 3 6 9 15 24 39 63...
0 5 5 10 15 25 40 65 105...
0 8 8 16 24 40 64 104 168...
0 13 13 26 39 65 104 169 273...
0 21 21 42 63 105 168 273 441...
MATHEMATICA
Table[Fibonacci[n] - Fibonacci[k]*Fibonacci[n - k + 1], {n, 13}, {k, n}] // Flatten (* Michael De Vlieger, Dec 11 2020 *)
CROSSREFS
Cf. A003991, A058071, A001629 (antidiagonal sums).
Sequence in context: A236533 A298187 A298183 * A298167 A298957 A298902
KEYWORD
nonn,tabl,easy
AUTHOR
Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004
STATUS
approved