[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097817
E.g.f. exp(2x)/(1-3x).
3
1, 5, 34, 314, 3784, 56792, 1022320, 21468848, 515252608, 13911820928, 417354628864, 13772702754560, 495817299168256, 19336874667570176, 812148736037963776, 36546693121708402688, 1754241269842003394560
OFFSET
0,2
COMMENTS
Second binomial transform of n!3^n.
FORMULA
a(n) = 3n*a(n-1)+2^n, n>0, a(0)=1.
a(n) ~ n! * exp(2/3) * 3^n. - Vaclav Kotesovec, Aug 04 2014
a(n) +(-3*n-2)*a(n-1) +6*(n-1)*a(n-2)=0. - R. J. Mathar, Dec 21 2014
From Peter Bala, Jan 30 2015: (Start)
a(n) = int {x = 0..inf} (3*x + 2)^n*exp(-x) dx.
The e.g.f. y = exp(2*x)/(1 - 3*x) satisfies the differential equation (1 - 3*x)*y' = (5 - 6*x)*y. Mathar's recurrence above follows easily from this.
The sequence b(n) = 3^n*n! also satisfies Mathar's recurrence with b(0) = 1, b(1) = 3. This leads to the continued fraction representation a(n) = 3^n*n!*( 1 + 2/(3 - 6/(8 - 12/(11 - ... - (6*n - 6)/(3*n + 2) )))) for n >= 2. Taking the limit gives the continued fraction representation exp(2/3) = 1 + 2/(3 - 6/(8 - 12/(11 - ... - (6*n - 6)/((3*n + 2) - ... )))). (End)
a(n) = 3^n*exp(2/3)*Gamma(n+1,2/3). - Gerry Martens, Jul 24 2015
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Exp[2x]/(1-3x), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Apr 02 2020 *)
CROSSREFS
Sequence in context: A328488 A258179 A068475 * A344556 A303175 A357422
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Aug 26 2004
STATUS
approved