OFFSET
0,2
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..434
Tanya Khovanova, Recursive Sequences
Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
Index entries for linear recurrences with constant coefficients, signature (198,-1).
FORMULA
a(n) = S(n, 2*99) - S(n-1, 2*99) = T(2*n+1, 5*sqrt(2))/(5*sqrt(2)), with Chebyshev polynomials of the 2nd and first kind. See A049310 for the triangle of S(n, x)= U(n, x/2) coefficients. S(-1, x) := 0 =: U(-1, x); and A053120 for the T-triangle.
a(n) = ((-1)^n)*S(2*n, 14*i) with the imaginary unit i and Chebyshev polynomials S(n, x) with coefficients shown in A049310.
G.f.: (1-x)/(1-198*x+x^2).
a(n) = 198*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=197. - Philippe Deléham, Nov 18 2008
a(n) = k^n + k^(-n) - a(n-1) = A003499(3n) - a(n-1), where k = (sqrt(2)+1)^6 = 99 + 70*sqrt(2) and a(0)=1. - Charles L. Hohn, Apr 05 2011
From Peter Bala, Mar 23 2015: (Start)
a(n) = ( Pell(6*n + 6 - 2*k) - Pell(6*n + 2*k) )/( Pell(6 - 2*k) - Pell(2*k) ), for k an arbitrary integer.
a(n) = ( Pell(6*n + 6 - 2*k - 1) + Pell(6*n + 2*k + 1) )/( Pell(6 - 2*k - 1) + Pell(2*k + 1) ), for k an arbitrary integer.
The aerated sequence (b(n))n>=1 = [1, 0, 197, 0, 39005, 0, 7722793, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -200, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. (End)
Sum_{n >= 1} 1/( a(n) - 1/a(n) ) = 1/196. - Peter Bala, Mar 26 2015
EXAMPLE
(x,y) = (7,1), (1393,197), (275807,39005), ... give the positive integer solutions to x^2 - 50*y^2 =-1.
MATHEMATICA
LinearRecurrence[{198, -1}, {1, 197}, 20] (* Ray Chandler, Aug 11 2015 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1-x)/(1-198*x+x^2)) \\ G. C. Greubel, Aug 01 2019
(Magma) I:=[1, 197]; [n le 2 select I[n] else 198*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
(Sage) ((1-x)/(1-198*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
(GAP) a:=[1, 197];; for n in [3..20] do a[n]:=198*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 31 2004
STATUS
approved