[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097696
Largest achievable determinant of a 4 X 4 matrix whose elements are the 16 consecutive integers n-15,...,n.
4
7343, 8784, 12065, 16800, 21600, 26400, 31200, 36000, 40800, 45600, 50400, 55200, 60000, 64800, 69600, 74400, 79200, 84000, 88800, 93600, 98400, 103200, 108000, 112800, 117600, 122400, 127200, 132000, 136800, 141600, 146400, 151200, 156000
OFFSET
8,1
FORMULA
For n>10 an arrangement maximizing the determinant is of the following form: det((n, n-9, n-13, n-8), (n-12, n-1, n-11, n-5), (n-7, n-6, n-2, n-15), (n-10, n-14, n-4, n-3)) =2400*(2*n-15). a(n)=a(15-n) for n<8.
Empirical G.f.: x^8*(65*x^4+1454*x^3+1840*x^2-5902*x+7343) / (x-1)^2. [Colin Barker, Jan 10 2013]
CROSSREFS
Other maximal 4 X 4 determinants: Cf. A097694: 4 X 4 matrix filled with integers from 0...n, A097695: 4 X 4 matrix filled with integers from -n...n. A097399, A097401, A097693: corresponding sequences for 3 X 3 matrices. a(16)=A085000(4).
Sequence in context: A235883 A117799 A295003 * A202574 A202567 A202566
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Aug 25 2004
STATUS
approved