[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097656
Binomial transform of A038507.
1
2, 4, 9, 24, 81, 358, 2021, 13828, 109857, 986922, 9865125, 108507160, 1302065441, 16926805678, 236975181189, 3554627504844, 56874039618753, 966858672535762, 17403456103546565, 330665665962928288, 6613313319249128577
OFFSET
0,1
FORMULA
a(n) = Sum_{k=0..n} n!*(k!+1) / (k!*(n-k)!) = Sum_{k=0..n} (P(n, k) + C(n, k)) = Sum_{k=0..n} P(n, k) + 2^n = A007526(n) + A000079(n). - Ross La Haye, Aug 24 2006
EXAMPLE
a(2) = 9 because P(2,0) = 1, P(2,1) = 2, P(2,2) = 2 while C(2,0) = 1, C(2,1) = 2, C(2,2) = 1 and 1 + 1 + 2 + 2 + 2 + 1 = 9.
MATHEMATICA
f[n_] := Sum[n!(k! + 1)/(k!(n - k)!), {k, 0, n}]; Table[ f[n], {n, 0, 20}] (* Robert G. Wilson v, Sep 24 2004 *)
CROSSREFS
Sequence in context: A137154 A098448 A006406 * A324148 A012936 A013091
KEYWORD
nonn
AUTHOR
Ross La Haye, Sep 20 2004
STATUS
approved