OFFSET
1,5
COMMENTS
This is known to be always >= 0, i.e. that n/phi(n) <= sqrt(2n) holds for all n. This is a consequence of the stronger inequality in A079530.
REFERENCES
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, p. 9.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
MATHEMATICA
Table[Floor[Sqrt[2*n]*EulerPhi[n]] - n, {n, 1, 100}] (* G. C. Greubel, Jan 14 2019 *)
PROG
(PARI) vector(100, n, (sqrt(2*n)*eulerphi(n))\1 -n) \\ G. C. Greubel, Jan 14 2019
(Magma) [Floor(Sqrt(2*n)*EulerPhi(n)) - n: n in [1..100]]; // G. C. Greubel, Jan 14 2019
(Sage) [floor(sqrt(2*n)*euler_phi(n)) - n for n in (1..100)] # G. C. Greubel, Jan 14 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved