[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097593
Number of increasing runs of even length in all permutations of [n].
2
0, 0, 1, 4, 22, 138, 998, 8174, 74898, 759634, 8451862, 102381222, 1341503546, 18907621562, 285259758366, 4587192222958, 78327809126818, 1415429225667234, 26987142531214118, 541434621007942454, 11402270678456333322
OFFSET
0,4
LINKS
FORMULA
E.g.f.: (4*(exp(-x)-1)+4*x-x^2)/(2*(1-x)^2).
a(n) = (2*n-1)*a(n-1) - (n-2)*(n-1)*a(n-2) - (n-2)*(n-1)*a(n-3). - Vaclav Kotesovec, Nov 19 2012
a(n) ~ n!*n*(4*exp(-1)-1)/2. - Vaclav Kotesovec, Nov 19 2012
a(n) = Sum_{k=1..floor(n/2)} k * A097592(n,k). - Alois P. Heinz, Jul 04 2019
EXAMPLE
Example: a(3)=4 because we have 123,(13)2,2(13),(23)1,3(12),321 (runs of even length shown between parentheses).
MAPLE
G:=(4*(exp(-x)-1)+4*x-x^2)/2/(1-x)^2: Gser:=series(G, x=0, 25): 0, seq(n!*coeff(Gser, x^n), n=1..24);
MATHEMATICA
Table[n!*SeriesCoefficient[(4*(E^(-x)-1)+4*x-x^2)/(2*(1-x)^2), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Nov 19 2012 *)
PROG
(PARI) x='x+O('x^66); concat([0, 0], Vec(serlaplace((4*(exp(-x)-1)+4*x-x^2)/(2*(1-x)^2)))) \\ Joerg Arndt, May 11 2013
CROSSREFS
Cf. A097592.
Sequence in context: A091638 A142984 A283055 * A188686 A025756 A366119
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Aug 29 2004
STATUS
approved